Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl.

نویسندگان

  • Alexander J Turner
  • Christian Frankenberg
  • Paul O Wennberg
  • Daniel J Jacob
چکیده

Methane is the second strongest anthropogenic greenhouse gas and its atmospheric burden has more than doubled since 1850. Methane concentrations stabilized in the early 2000s and began increasing again in 2007. Neither the stabilization nor the recent growth are well understood, as evidenced by multiple competing hypotheses in recent literature. Here we use a multispecies two-box model inversion to jointly constrain 36 y of methane sources and sinks, using ground-based measurements of methane, methyl chloroform, and the C13/C12 ratio in atmospheric methane (δ13CH4) from 1983 through 2015. We find that the problem, as currently formulated, is underdetermined and solutions obtained in previous work are strongly dependent on prior assumptions. Based on our analysis, the mathematically most likely explanation for the renewed growth in atmospheric methane, counterintuitively, involves a 25-Tg/y decrease in methane emissions from 2003 to 2016 that is offset by a 7% decrease in global mean hydroxyl (OH) concentrations, the primary sink for atmospheric methane, over the same period. However, we are still able to fit the observations if we assume that OH concentrations are time invariant (as much of the previous work has assumed) and we then find solutions that are largely consistent with other proposed hypotheses for the renewed growth of atmospheric methane since 2007. We conclude that the current surface observing system does not allow unambiguous attribution of the decadal trends in methane without robust constraints on OH variability, which currently rely purely on methyl chloroform data and its uncertain emissions estimates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atmospheric methane and global change

Methane (CH4) is the most abundant organic trace gas in the atmosphere. In the distant past, variations in natural sources of methane were responsible for trends in atmospheric methane levels recorded in ice cores. Since the 1700s, rapidly growing human activities, particularly in the areas of agriculture, fossil fuel use, and waste disposal, have more than doubled methane emissions. Atmospheri...

متن کامل

Assessment of land use changes using remote sensing and GIS and their implications on climatic variability for Balachaur watershed in Punjab, India

Abstract Decadal changes in land use/land cover for Balachaur watershed in Nawanshahar district, Punjab, India were studied using black and white aerial photographs for March 1984 on approximately 1:20,000 scale and multidate geocoded false colour composites (FCC) of IRS-1D LISS-III on 1:50,000 scale for March 2002, September 2002, and May 2003 and interpreted visually to prepare land use/land...

متن کامل

Impact of Emissions, Chemistry, and Climate on Atmospheric Carbon Monoxide: 100-year Predictions from a Global Chemistry-Climate Model

The possible trends for atmospheric carbon monoxide in the next 100 years have been illustrated using a coupled atmospheric chemistry and climate model driven by emissions predicted by a global economic development model. Various model runs with different assumptions regarding emissions or model parameters have been carried out to investigate the impacts of model and emission uncertainties on t...

متن کامل

Renewed growth of atmospheric methane

[1] Following almost a decade with little change in global atmospheric methane mole fraction, we present measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE) and the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO) networks that show renewed growth starting near the beginning of 2007. Remarkably, a similar growth rate is found at all monitori...

متن کامل

Hemispheric average Cl atom concentration from 13 C / 12 C ratios in atmospheric methane

Methane is a significant atmospheric trace gas in the context of greenhouse warming and climate change. The dominant sink of atmospheric methane is the hydroxyl radical (OH). Recently, a mechanism for production of chlorine radicals (Cl) in the marine boundary layer (MBL) via bromine autocatalysis has been proposed. The importance of this mechanism in producing a methane sink is not clear at pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 21  شماره 

صفحات  -

تاریخ انتشار 2017